The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.

نویسندگان

  • Marcel Robischon
  • Juan Du
  • Eriko Miura
  • Andrew Groover
چکیده

The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the initiation and function of shoot apical meristems. We report here the functional characterization of a Populus class III HD ZIP gene, popREVOLUTA (PRE), that demonstrates another role for class III HD ZIPs in regulating the development of cambia and secondary vascular tissues. PRE is orthologous to Arabidopsis (Arabidopsis thaliana) REVOLUTA and is expressed in both the shoot apical meristem and in the cambial zone and secondary vascular tissues. Transgenic Populus expressing a microRNA-resistant form of PRE presents unstable phenotypic abnormalities affecting both primary and secondary growth. Surprisingly, phenotypic changes include abnormal formation of cambia within cortical parenchyma that can produce secondary vascular tissues in reverse polarity. Genes misexpressed in PRE mutants include transcription factors and auxin-related genes previously implicated in class III HD ZIP functions during primary growth. Together, these results suggest that PRE plays a fundamental role in the initiation of the cambium and in regulating the patterning of secondary vascular tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Populus Class III HD ZIP Transcription Factor POPCORONA Affects Cell Differentiation during Secondary Growth of Woody Stems

The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, POPCORONA, during secondary growth of woody st...

متن کامل

A HD‐ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus

Wood production is dependent on the activity of the vascular cambium, which develops from the fascicular and interfascicular cambia. However, little is known about the mechanisms controlling how the vascular cambium is developed in woody species. Here, we show that PtrHB4, belonging to the Populus HD-ZIP III family, plays a critical role in the process of vascular cambium development. PtrHB4 wa...

متن کامل

Formation of woody biomass is regulated by class III HD Zip genes

Secondary growth and the development of woody tissue is a key process in the formation of woody biomass. The gene family of Class III HDZip genes has been shown in the herbaceous Arabidopsis model to play a central role in regulating polarity and vascular development. While Arabidopis is a poor model for investigating processes of wood formation, in this project all poplar Class III HDZip genes...

متن کامل

Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation.

Class III HD-ZIP and KANADI gene family members have complementary expression patterns in the vasculature and their gain-of-function and loss-of-function mutants have complementary vascular phenotypes. This suggests that members of the two gene families are involved in the establishment of the spatial arrangement of phloem, cambium and xylem. In this study, we have investigated the role of thes...

متن کامل

Radial Patterning of Arabidopsis Shoots by Class III HD-ZIP and KANADI Genes

BACKGROUND Shoots of all land plants have a radial pattern that can be considered to have an adaxial (central)-abaxial (peripheral) polarity. In Arabidopsis, gain-of-function alleles of PHAVOLUTA and PHABULOSA, members of the class III HD-ZIP gene family, result in adaxialization of lateral organs. Conversely, loss-of-function alleles of the KANADI genes cause an adaxialization of lateral organ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 155 3  شماره 

صفحات  -

تاریخ انتشار 2011